315 research outputs found

    Large adiabatic temperature and magnetic entropy changes in EuTiO3

    Get PDF
    We have investigated the magnetocaloric effect in single and polycrystalline samples of quantum paraelectric EuTiO3 by magnetization and heat capacity measurements. Single crystalline EuTiO3 shows antiferromagnetic ordering due to Eu2+ magnetic moments below TN = 5.6 K. This compound shows a giant magnetocaloric effect around its Neel temperature. The isothermal magnetic entropy change is 49 Jkg-1K-1, the adiabatic temperature change is 21 K and the refrigeration capacity is 500 JKg-1 for a field change of 7 T at TN. The single crystal and polycrystalline samples show similar values of the magnetic entropy change and adiabatic temperature changes. The large magnetocaloric effect is due to suppression of the spin entropy associated with localized 4f moment of Eu2+ ions. The giant magnetocaloric effect together with negligible hysteresis, suggest that EuTiO3 could be a potential material for magnetic refrigeration below 20 K.Comment: 12 pages, 4 figure

    Zero-th law in structural glasses: an example

    Full text link
    We investigate the validity of a zeroth thermodynamic law for non-equilibrium systems. In order to describe the thermodynamics of the glassy systems, it has been introduced an extra parameter, the effective temperature which generalizes the fluctuation-dissipation theorem (FDT) to off-equilibrium systems and supposedly describes thermal fluctuations around the aging state. In particular we analyze two coupled systems of harmonic oscillators with Monte Carlo dynamics. We study in detail two types of dynamics: sequential dynamics, where the coupling between the subsystems comes only from the Hamiltonian; and parallel dynamics where there is another source of coupling: the dynamics. We show how in the first case the effective temperatures of the two interacting subsystems are different asymptotically due to the smallness of the thermal conductivity in the aging regime. This explains why, in structural glasses, different interacting degrees of freedom can stay at different effective temperatures, and never thermalize.Comment: 10 pages. Contribution to the Proceedings of the ESF SPHINX meeting `Glassy behaviour of kinetically constrained models' (Barcelona, March 22-25, 2001). To appear in a special issue of J. Phys. Cond. Mat

    Damage spreading in the mode-coupling equations for glasses

    Full text link
    We examine the problem of damage spreading in the off-equilibrium mode coupling equations. The study is done for the spherical pp-spin model introduced by Crisanti, Horner and Sommers. For p>2p>2 we show the existence of a temperature transition T0T_0 well above any relevant thermodynamic transition temperature. Above T0T_0 the asymptotic damage decays to zero while below T0T_0 it decays to a finite value independent of the initial damage. This transition is stable in the presence of asymmetry in the interactions. We discuss the physical origin of this peculiar phase transition which occurs as a consequence of the non-linear coupling between the damage and the two-time correlation functions.Comment: 5 pages, 2 figures, Revtex fil

    A Crash Course on Aging

    Full text link
    In these lecture notes I describe some of the main theoretical ideas emerged to explain the aging dynamics. This is meant to be a very short introduction to aging dynamics and no previous knowledge is assumed. I will go through simple examples that allow one to grasp the main results and predictions.Comment: Lecture Notes (22 pages) given at "Unifying Concepts in Glass Physics III", Bangalore (2004); to be published in JSTA

    Classical wave experiments on chaotic scattering

    Full text link
    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments.Comment: 33 pages, 13 figures; invited review for the Special Issue of J. Phys. A: Math. Gen. on "Trends in Quantum Chaotic Scattering

    Oncogenic driver mutations predict outcome in a cohort of head and neck squamous cell carcinoma (HNSCC) patients within a clinical trial

    Get PDF
    234 diagnostic formalin-fixed paraffin-embedded (FFPE) blocks from homogeneously treated patients with locally advanced head and neck squamous cell carcinoma (HNSCC) within a multicentre phase III clinical trial were characterised. The mutational spectrum was examined by next generation sequencing in the 26 most frequent oncogenic drivers in cancer and correlated with treatment response and survival. Human papillomavirus (HPV) status was measured by p16INK4a immunohistochemistry in oropharyngeal tumours. Clinicopathological features and response to treatment were measured and compared with the sequencing results. The results indicated TP53 as the most mutated gene in locally advanced HNSCC. HPV-positive oropharyngeal tumours were less mutated than HPV-negative tumours in TP53 (p < 0.01). Mutational and HPV status influences patient survival, being mutated or HPV-negative tumours associated with poor overall survival (p < 0.05). No association was found between mutations and clinicopathological features. This study confirmed and expanded previously published genomic characterization data in HNSCC. Survival analysis showed that non-mutated HNSCC tumours associated with better prognosis and lack of mutations can be identified as an important biomarker in HNSCC. Frequent alterations in PI3K pathway in HPV-positive HNSCC could define a promising pathway for pharmacological intervention in this group of tumours

    Perturbations of Noise: The origins of Isothermal Flows

    Full text link
    We make a detailed analysis of both phenomenological and analytic background for the "Brownian recoil principle" hypothesis (Phys. Rev. A 46, (1992), 4634). A corresponding theory of the isothermal Brownian motion of particle ensembles (Smoluchowski diffusion process approximation), gives account of the environmental recoil effects due to locally induced tiny heat flows. By means of local expectation values we elevate the individually negligible phenomena to a non-negligible (accumulated) recoil effect on the ensemble average. The main technical input is a consequent exploitation of the Hamilton-Jacobi equation as a natural substitute for the local momentum conservation law. Together with the continuity equation (alternatively, Fokker-Planck), it forms a closed system of partial differential equations which uniquely determines an associated Markovian diffusion process. The third Newton law in the mean is utilised to generate diffusion-type processes which are either anomalous (enhanced), or generically non-dispersive.Comment: Latex fil

    Interaction model for magnetic holes in a ferrofluid layer

    Get PDF
    Nonmagnetic spheres confined in a ferrofluid layer (magnetic holes) present dipolar interactions when an external magnetic field is exerted. The interaction potential of a microsphere pair is derived analytically, with a precise care for the boundary conditions along the glass plates confining the system. Considering external fields consisting of a constant normal component and a high frequency rotating in-plane component, this interaction potential is averaged over time to exhibit the average interparticular forces acting when the imposed frequency exceeds the inverse of the viscous relaxation time of the system. The existence of an equilibrium configuration without contact between the particles is demonstrated for a whole range of exciting fields, and the equilibrium separation distance depending on the structure of the external field is established. The stability of the system under out-of-plane buckling is also studied. The dynamics of such a particle pair is simulated and validated by experiments.Comment: 15 pages, 11 figures (18 with subfigures). to appear in Phys. Rev.
    corecore